Human Bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure.

نویسندگان

  • Wensheng Wang
  • Robert A Bambara
چکیده

Flap endonuclease 1 (FEN1) participates in removal of RNA primers of Okazaki fragments, several DNA repair pathways, and genome stability maintenance. Defects in yeast FEN1 produce chromosomal instability, hyper-recombination, and sequence duplication. These occur because flaps produced during replication are not promptly removed. Long-lived flaps sustain breaks and form misaligned bubble structures that produce duplications. Flaps that can form secondary structure inhibit even wild-type FEN1 and are more likely to form bubbles. Although proliferating cell nuclear antigen stimulates FEN1, it cannot resolve secondary structures. Bloom protein (BLM) is a 3'-5' helicase, mutated in Bloom syndrome. BLM has been reported to interact with and stimulate FEN1 independent of helicase function. We found activation of the helicase by ATP did not alter BLM stimulation of cleavage of unstructured flaps. However, BLM stimulation of FEN1 cleavage of foldback flaps, bubbles, or triplet repeats was increased by an additional increment when ATP was added. Helicase-dependent stimulation of FEN1 cleavage was robust over a range of sizes of the single-stranded part of bubbles. However, increasing the length of the 5' annealed region of the bubble ultimately counteracted the stimulatory capacity of the BLM helicase. Moderate helicase-dependent stimulation was observed with both fixed and equilibrating CTG flaps. Our results suggest that BLM suppresses genome instability by aiding FEN1 cleavage of structure-containing flaps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5' flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5' flap structures and is involved in DNA ...

متن کامل

Direct and indirect roles of RECQL4 in modulating base excision repair capacity.

RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund-Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show t...

متن کامل

The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA

Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replicatio...

متن کامل

Flap endonuclease of bacteriophage T7

Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependenc...

متن کامل

Human RECQL 5 b stimulates flap endonuclease 1

Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 7  شماره 

صفحات  -

تاریخ انتشار 2005